
1

Availability Prediction Based on
Multi-Context Data

PROJECT PLAN

Group: sdmay19-33

Client: Goce Trajcevski

Team members:

Justice Wright - Report Facilitator
Shane Impola – Scribe

Noah Chicchelly – Meeting and Communications Facilitator
Nick Schmidt – Software Systems Engineer

Tristan Anderson – Network Systems Engineer
Brendon McGehee – Hardware Systems Engineer

Team email: ​sdmay19-33@iastate.edu

Team Website: ​https://sdmay19-33.sd.ece.iastate.edu

Version 1.0
Revised: September 28, 2018

mailto:sdmay19-33@iastate.edu
https://sdmay19-33.sd.ece.iastate.edu/

2

Table of Contents
1 Introductory Material 4

1.1 Acknowledgement 4

1.2 Problem Statement 4

1.3 Operating Environment 4

1.4 Intended Users and Intended Uses 4

1.5 Assumptions and Limitations 4

1.6 Expected End Product and Other Deliverables ​ 5

2 Proposed Approach and Statement of Work 5

2.1 Objective of the Task 5

2.2 Functional Requirements 5

2.3 Constraints Considerations 6

2.3.1 Non-Functional Requirements 6

2.3.2 Standards 6

2.4 Previous Work and Literature 7

2.5 Proposed Design 7

2.6 Technology Considerations 7

2.7 Safety Considerations 9

2.8 Task Approach 10

2.9 Possible Risks and Risk Management 11

2.10 Project Proposed Milestones and Evaluation Criteria 12

2.11 Project Tracking Procedures 12

2.13 Test Plan 13

3 Project Timeline, Estimated Resources, and Challenges

3.1 Project Timeline 14

3.2 Feasibility Assessment 14

3.3 Personal Effort Requirements 15

3.4 Other Resource Requirements 15

3.5 Financial Requirements 16

4 Closure Materials

4.1 Conclusion 16

3

4.2 References 16

4.3 Appendices 16

List of Figures
Figure 1: Technology Considerations
Figure 2: Task Approach

List of Tables
Table 1: Project Timeline
Table 2: Personnel Effort Requirements

List of Definitions
MySQL - My Structured Query Language
AWS - Amazon Web Services
VM - Virtual Machine

4

1 Introductory Material

1.1 Acknowledgement
The Availability Prediction team would like to thank Dr. Trajcevski for all of his technical and
project advice given throughout the duration of this project.

1.2 Problem Statement
Currently in a restaurant atmosphere there are multiple data sources that could be better used
to predict a better recommendation for table wait time.

Our goal is to create a device that can collect and organize data from a restaurant environment
such as, how long people take to eat, how many people are sitting at a certain table, and what
tables are being used. The data can then be analyzed to answer many questions about the
restaurant.

1.3 Operating Environment
The expected operating environment of this project will be inside of restaurants. The system
should not be exposed to any harsh weather conditions because it will remain inside in a room
temperature environment. The only condition that the system might be exposed to is some dust
and debris over a long period of time.

1.4 Intended Users and Intended Uses
Our intended final project users are going to have a wide range of technical knowledge. The
individuals that are going to be using this are both customers and employees of the restaurant
that it will be implemented in. Although customers and employees will be using this in an app
based form, the purpose of the app for each will be very different.

The employees will be using this app to input resturant data such as when the food has been
given to the table, when the food has been removed from the table, and when the check has
been given to the table. This information will then be used to better predict table wait time, which
brings me to customer use. The customer will use the app to see available tables as well as
receive restaurant wait times.

1.5 Assumptions and Limitations
Assumptions:
The final product will only be implemented indoors - the hardware of the project does not need
to stand up to any harsh weather conditions.

Hardware component will not have any power limitations - the hardware component will have
access to electrical outlets.

Limitations:

5

Sensors need to be unnoticeable inside a restaurant - The sensors used to collect data need to
be implemented into a restaurant setting without impeding the normal operation of the
restaurant.
The application needs to be usable by all types of technical backgrounds - The app that we will
be implementing in our project can not be overly difficult to use because people of all technical
backgrounds will be utilizing the application.

1.6 Expected End Product and Other Deliverables
The final product of this project will include sensor with a microcontroller to collect data about
tables, a networking component to organize and analyze the collected data, and an app
component for either an employee or a customer. The components need to be able to
communicate with each other but they do not need to communicate individually. The sensor
component needs to be able to communicate with the networking component and the
networking component needs to be able to communicate with the software component.

2 Proposed Approach and Statement of Work

2.1 Objective of the Task
The objective of the project is to design a product that will enable consumers and producers of
restaurants to easily access real-time data about seating availability in a specific restaurant. The
product will be a mobile app and possibly web app available to customers and employees. The
team goal is to implement the functionality required to have a usable app with this information.
This will include hardware installed in seating areas and a fully developed server and database
to communicate with our application.

2.2 Functional Requirements
The functional requirements will be split into customer use, and employee use. There will be two
forms of the application for each of these users. Below is a list of the customer’s function
requirements. The expected use case is to find a location you’re interested in visiting, check for
generic wait times of that day, or click on more specifics for a top down view of available
seating, or an estimated time of arrival for a given table.

● Choose a Location
● View an estimated wait time for that time of day
● View available seating
● View an estimated wait time for a specific table
● Real time updates on when tables become available (push notifications)

Employee use cases are going to be a lot of the same, but with a few extra perks. Employees
will be able to see specific state’s of dining that a customer is in, as well as what was ordered:

● Choose a Location

6

● View an estimated wait time for that time of day
● View available seating
● View an estimated wait time for a specific table
● Real time updates on when tables become available (push notifications)
● View where a specific table is at in their meal (food ordered, food delivered, etc)
● View what was ordered at a specific table
● Override / shutdown specific functionality of the app (Table marked as out-of-order)

2.3 Constraints Considerations

2.3.1 Non-Functional Requirements
Availability - The app must be up 24/7 for estimated times at specific hours. Even if closed,
information for future events is vital.

Data Integrity - Making sure our data is always accurate over the span of the app’s lifetime.
Allowing businesses and consumers the ability to trust the app and use it flawlessly.

Fault Tolerance - The app will continue to work if one system goes down. For example, if our
live view of seating fails to work, you can still get an estimate of the wait time for that time of
day.

Scalability - Restaurants are different shapes and sizes. The app must be able to accomodate a
large or small number of seats, seating arrangements, and real-time data at smaller, or huge
scales.

Usability - The app should be easily accessible by clients as well as employees. An intuitive way
to view the information you want, immediately.

2.3.2 Standards
The standards of the project will be built with a few assumptions. For one, we will use MySQL
that has standards built-in. However, with the data release of people, we will be working under
the assumption that the data is of our own use. In the scope of the project, that is not one that
we are going to be focusing on. Under reasonable circumstances we will be releasing data that
is known by at least an employee of a restaurant, nothing that isn’t “public” to the restaurant.

The customer use-cases of the app will also be limited to very generic information and ETAs,
rather than giving specific data about what a table is or is not eating, or how much their bill is.
This is trivial for standards and practices. Employers will not release that information, but have it
at their use to better help customers with information they may request.

2.4 Previous Work and Literature
The app will resemble a mix up of a few different entities that are already in the market today.
The first one is google:

7

Google takes information from restaurants to estimate the popular times of a restaurant. They
do other things like general prices, reviews, etc. But in relation to our app, google only touches
on one aspect, the estimated “popular times” of a given restaurant. Our app will have this same
feature but implemented in a more specific way. Google uses the generic approach of taking
users locations from their phones and aggregating the data. This can make a statistic fluctuate if
people are there to eat, eat for a long time, just buy something nearby, etc. Our app seaks to
perfect this feature and make it more accurate.

The second thing on the market that our app might resemble is event seating services:

You can now buy tickets to specific seats for a large event, or movie, and see top down views of
the seating arrangements with what seats are what price, and if they are taken or not. This is
the same process we want, but for restaurants. Specifically for wait times on specific tables, or
seeing how busy it is in real time, from information given from us, the restaurant. Rather than
aggregated data from location pings of mobile phones.

We are not following previous work for this. This means we have to implement all aspects of
functionality. Starting with hardware implementation to give us the data we require to implement
our functional requirements within the app.

2.5 Proposed Design
Our design will be relatively simple.

1. Find a way to gather the required data (Are people at a table, where are they within their
meal, etc.)

2. Communicate that data to a server and database for organization and availability
a. We will have dynamic and static queries for both consumer and employees
b. We will have the ability to speak to the hardware, as well as the front-end app.

3. Implement the front-end application for employees and customers to use in real-time.

Our scope is relatively well defined. There are a few design alternatives to use/non-use cases.
And there could be widened scope by adding in security and data-release-standard
requirements. These are all possibilities depending on how quickly things move throughout the
Fall semester of 2018.

2.6 Technology Considerations
There are three essential subsystems to our overall design, each with their own technological
considerations: the data collection system, the data analytics system, and the client-side
application, all of which are pictured below.

8

Figure 1: Technology Considerations

For the data collection system we needed multiple sensors to help determine occupancy of a
table. Force sensors (load cells) were the original consideration, to be placed beneath the
seats, thus triggering upon the sitting down of a guest. While this is a worthwhile datapoint it
was determined further sensors would be necessary as both a precaution against false positives
and a way to handle booth seating. Because of the nature of booth style seating, it is
unsustainable to put enough force sensors in the seating area to accurately detect a seated
occupant as weight is distributed more widely around a booth.

To overcome this shortcoming the decision was made to introduce IR sensors to the seating
environment. IR sensors operate outside of the physical seat, which means they do not share
the weakness of the load cells. In addition, seating is much more linear in a booth scenario,
meaning IR blocking is much easier to achieve in such a scenario, so the addition of IR actually
functions best in our previously worst visibility situation.

Both sensors are configurable to be controlled by a microcontroller which will both provide
power and input necessary to the sensors as well as collect and transfer data from the sensors.
In this instance we chose to use the Elegoo UNO R3 because we have team members who

9

have experience using them, and they’re the cheapest microcontroller commercially available
with our desired chip, merging familiarity with lower production cost.

From here the sensor data needs to make its way to our data analytics clusters. We decided
against outfitting each microcontroller with networking capability due to concerns over scalability
concerns with both cost overloading our servers with too many connections in production.
Instead we opted to aggregate the data from each microcontroller into a raspberry pi which
bridges the data to our analytics system. This decision was made part to due accessibility since
many team members already own and were willing to contribute pi’s to the project as well as the
price of a single pi with connectivity coming in at less price/unit than equipping each Uno that a
pi could manage with wifi modules.

For the data analytics system we knew we needed multiple databases to store our sensor data
both pre and post analytics as well as instances for performing the real-time analytics. This
could be achieved in a multitude of ways, and the real decision here was where to host this
system. Ultimately it was decided to use Amazon Web Services (AWS) for this system. This
was decided because AWS, in addition to being the industry standard at this point, doesn’t
require us to operate or own our own hardware, and has free offerings we felt we would stay
inside for the scope of this project making costs non-existent for this system. Additionally were
our product to go into production AWS scales well if we ever escape the data usage of their free
environment and offers many security tools and compliance aids that could be vital to
expansion.

Now that we have our environment to host our analytics in, we required a means to access the
end data and relay that information to our customers. Given that many restaurants already
employ tablets in some form for their seating systems it was decided fairly early that some form
of mobile application. The decision point here is what platforms will we support (iOS, Android)
and what language/tools will we use during development. The decision to use Flutter was made
for multiple reasons. Flutter is an open source project created by Google that is used to create
mobile apps for both iOS and Android. The open source aspect means again that there will be
no cost of creating the application, of which itself could eventually be sold to increase
profitability of our system. The fact that both iOS and Android development are supported
means that we can produce a product that should fit any companies existing infrastructure.
Additionally Flutter uses Dart as its primary language, which while no one on our team has
much direct experience with, is an object-oriented programming language similar to Java which
our entire team has experience with.

2.7 Safety Considerations
The ideal testing scenario for our equipment is a mock restaurant booth where patrons are
unaware they are even interacting with our product. Because of this there become several
safety considerations.

10

Sensors will need to be able to withstand and function under the weight of a fully grown adult.
We rely on load cells to detect occupancy of seats, and a load cell breaking would both render
our product useless, pose as a threat to our customer in the form of debris potentially puncturing
their skin, as well as pose a fire risk if the wires were to come loose during the sensors
destruction. To ensure the safety of our customers care was taken to inspect the datasheet for
max load capacity and compare that against our expected customers. Additionally the load
sensors would be put through numerous tests with clients of varying sizes before ever reaching
production, and if a defect was discovered the product would not launch until an alternative
sensor was found. The connection integrity of the wiring would also be checked routinely during
testing, and done by Brendon, who has the most experience with proper circuit configuration
and maintenance.

Restaurant scenarios also introduce the possibility of food spills (both liquid and solid) being
introduced into our system. To reduce the risk of shock and failure the microcontrollers have
been designed to be mounted outside of the typical dining area, adjacent to the booth where
spills are very unlikely to occur. All sensors have been designed to be placed within seats,
tables, or other existing dining infrastructure, as to add a layer of abstraction between
themselves and the dining surface, thus reducing the risk of direct contact.

2.8 Task Approach
Our approach to solving this problem will have three main components. The first component is
the hardware, which will take the form of the various sensors that are embedded into the client
environment. We need our sensors to be able to collect various bits on information about the
occupants of a given table, so we need to find types of sensors that will be able to collect to
most robust information possible. The data points that they generate should be able to be used
in multiple predictions, and they should be relatively straightforward to implement. We decided
to use both IR and force sensors, and pair each table with an Arduino Nano with internet
connectivity to gather the data generated by the sensors at the table. This approach allows us to
gather sensory information locally at each table before sending and relevant information directly
to the server. There will be no need for a central computer or server for the restaurant to
maintain in which all sensors will be connected. Ideally, this approach should be cheap and
simple to install, while requiring minimal maintenance.

The second component of our solution are the web services. This is the part that will be doing
all of the data aggregation, storage, analysis and prediction, and broadcasting of the processed
information. We decided to use AWS for our web services because it meets our needs while
being cloud-based, meaning clients won’t need to keep and maintain server hardware in-house.
This also has the effect of reducing the initial cost of implementing our solution significantly.
There will be two components to our usage of AWS, the server and the database. The server
will be used to aggregate any information sent to it by the sensors and use it to update the
database. It will also periodically perform analysis on the contents of the database, making
predictions that will be stored until the next one is made. The server will also handle data
requests from employee and customer phones. The database will have relational tables that will

11

store all the information from each sensor type and for each table, and an input table where
unprocessed entries will be buffered. This approach allows us to make queries about
information specific to one table, which might be more useful to guests, or for information about
many different tables, which would be more useful to employees. The web services can be
visualized in Figure 2.

Figure 2: Task Approach

The third component of our solution is the user interface, the apps that employees and guests
will use to get predictions. We need the user interface to be easily accessible to both types of
users, so using mobile applications is what we’ve decided to do. The apps will need to be able
to have updates pushed to them by the server and pull updates on demand. Using mobile apps
also eliminates the need for restaurants to buy proprietary hardware for customer use, akin to
the buzzers commonly seen today. Theft or damage of the user interface will no longer be a
concern because customers will be using their own devices.

2.9 Possible Risks and Risk Management
Risk: There persists the possibility that our current sensor array won’t provide enough data
points to allow for accurate prediction analytics to be performed. As our weakest area of
exposure is data analytics there’s no one on our team that has a good enough grasp to rule this
out.

Risk Level: Medium
Mitigation: Our design to use a series of microcontrollers to control and feed data from individual
sensors leaves room for expansion. We are not currently using nearly every input port available
to the controllers, and could add sensors to each system very easily. If the need for inputs ever
exceeds our microcontroller we can simply scale up to a larger microcontroller.

12

Risk Level Post-Mitigation: Low

Risk: Our team has no experience with Dart or AWS which are cornerstones to the software
side of our project. There lies a risk that this inexperience may be insurmountable and hinder
progress and push back deadlines.
Risk level: Low-Medium
Mitigation: We have fallbacks that we are more familiar with for both Flutter and AWS if the
learning curve starts to hinder our progress in a meaningful fashion. The ece department offers
VM and database services that we have utilized for previous classes, and could use to replace
AWS if need be, four team members have experience with these systems. Three team
members also have experience coding directly for android using java and Android Studio if
Flutter proves to be a choke point. Both of these replacement opportunities are highly viable
and still are free offerings, meaning using these as fail-state fallbacks would only incur costs of
time.

Risk Level Post-Mitigation: Low

2.10 Project Proposed Milestones and Evaluation Criteria
The first milestone would be to gather data from our sensor and process it through a
microcontroller. This will be verified by configuring the controller to read and save data it reads
from the sensor, purposefully triggering the sensor, and examining the data to ensure the
sensor was triggered and the controller was aware the trigger.

The next milestone is to send this sensor data to a database for storage. To verify this, the
sensor system consisting of the individual sensors, and microcontrollers will be hooked up to a
raspberry pi, configured to transmit the sensor data to a database in AWS. We can then query
that database in real time, and observe data being populated, verifying this milestone.

A third milestone will be configuring instances to consume the data in the database and perform
predictive analytics with the data. To verify this we can load a dummy database with known
data, and have our analytics instance perform analysis of this data. We can by hand determine
the outputs we expect to see and confirm this milestone is achieved if the results match.

Another milestone will be interfacing with our web instances to observe the output of the
analytics in a client-facing application. This can be verified by starting with a blank database,
triggering the sensors, and verifying that the app updates corresponding to the presence of new
data.

2.11 Project Tracking Procedures
Trello and git and discord and weekly reports

13

2.12 Expected Results and Validation

The expected end result is a hardware system capable of relaying sensor data to backend
analytics system that can deliver real-time predictability models to a front-end application used
by the customer that meets all the requirements and goals outlined in section 2.1.

Validation is built into the design process, as each new analytic algorithm will need to be
individually verified for correctness, each piece of hardware or sensor incorporated will be
checked for reliability of data/functionality, and each feature of the client-side application will
need to have accompanying use-case tests.

However to ensure that the final product is more than just the sum of its parts, validation for the
final deliverable product will be performed and reported according to the test plan outlined
below.

2.13 Test Plan
Hardware Tests

FR.1:​ This is a test program for the an Arduino Nano that prints out sensor values in real
time to test if the sensors function properly.

Test Case:​ Test if the sensors are outputting data as expected.
Test Steps:

1. Start the test program.
2. Manipulate the sensors by hand.
3. Watch the printed output and determine if they are as expected.

Expected Results: ​The printed output should change corresponding to the
manual changes in the state of the sensor.

FR.2:​ This is test software that will take a set of raw input from the sensors and process
it in order to determine if the arduino is processing sensor output properly.

Test Case:​ Test a set of data on both the arduino and a computer
Test Steps:

1. Run the arduino program, enabling a debug option that will send all inputs
to the computer.

2. Simulate the data processing on the computer.
3. Compare the result of the arduino program to the simulation.

Expected Results: ​The output from the arduino should match that of the
simulation.

Server Tests

FR.3:​ This is a connectivity test that will ping the server and await a response to
determine if the server is online and responding to requests.

Test Case:​ Test that the server responds to requests as expected.
Test Steps:

14

1. Send a request to the server test address.
2. Wait for a response.
3. Compare the response to a preloaded value.

Expected Results: ​The response from the server should match the preloaded
value.

FR.4: ​This is a database test that will test the functionality of the database.

Test Case:​ Test that the database handles inputs and requests as expected.
Test Steps:

1. Send a request to the database test address.
2. Wait for the server to perform a set of automated queries on the database

and respond with the result.
Expected Results: ​The result should indicate that the tests were successful.

App Tests

FR.5: ​This is a set of test functions on the apps that implement the same functionality as
described in tests FR.3 and FR.4 to determine if the app is communicating properly with
the server. See those tests for details.

3 Project Timeline, Estimated Resources, and Challenges

3.1 Project Timeline

Table 1: Project Timeline

3.2 Feasibility Assessment

By the end of this project we expect to have an app capable of showing a live count of
the current wait time for seating. We plan to include a version for both customers and owners.
The customer version will show available tables and the live count. The owner version will
contain detailed information and analytics about wait times at various times of the day and wait
times for specific tables/foods.

15

On the hardware side of things we will have a system built to show a proof of concept.
There will be at least one working table with a transmitter and seating sensors to show that the
idea works. We will insure this design is modular and relatively simple to install so that the
system is usable in other environments and able to be installed.

Some problems for this project would include difficulty with managing multiple tables in a
scalable matter. Data being transferred and stored could become overwhelming. Additionally,
formulating an algorithm to dig through such large amounts of data to calculate the wait time
could become difficult.

3.3 Personnel Effort Requirements

Task Description TIme

Test Data Create a program to generate bogus data for use
in later testing.

10 hours

Create
Requirements

Create a list of the requirements needed for the
software.

5 hours

Design Algorithm Design the data analytics algorithm. 20 hours

Test and Improve
Algorithm

Run algorithm through data to improve algorithm.
Test accuracy of the algorithm. Possible machine
learning.

20 hours

Integrate with
Networking

Integrate with the networking tools and begin
grabbing/submitting data to the network.

20 hours

Setup Seat Sensors Set up seat sensors with chairs. 20 hours

Setup Raspberry PI
Integration

Integrate with Raspberry PI and transmit get data
usable format.

10 hours

Transfer Data Get data transferring and entered into
database/java

15 hours

Table 2: Personnel Effort Requirements

3.4 Other Resource Requirements

● Tables for testing
● Chairs for testing
● Raspberrypi/Arduinos for data collection and analysis
● Transmitters to send data from tables.
● Pressure sensors to detect occupancy.

3.5 Financial Requirements

16

Per Table:
● 10 nrf24l01+ transacievers with antenna. ($1.19 each, $11.98 total)
● 4 Infrared Proximity Sensor (13.95 each, 55.80 total)
● 4 Elegoo Nano ($5 each, $20 total)
● 1 Elegoo Uno ($10.86)
● 4 Pressure Sensor ($14.99 each, $59.96 total)

Per restaurant:

● 1 Raspberry Pi 3 Model B ($39)
● 1 nrf24l01+ transciever with antenna. ($1.19)

4 Closure Materials

4.1 Conclusion
Our goal is to design a product that will enable restaurant operators and customers to easily
access real-time data about seating availability. The data will be gathered through various
occupancy sensors placed around restaurants. This data will be processed to make
assumptions on when seats will be available, and how customers use those seats. The data will
be easily accessible on the users mobile device. If we are successful, our project will greatly
improve the customer experience by reducing wait times, and it will improve logistics for
operators by simplifying customer data.

4.2 References
(This will be built up over the course of the year)

nRF24L01+
https://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P

Arduino Nano
https://components101.com/microcontrollers/arduino-nano

Pi
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

4.3 Appendices

(This will be built up over the course of the year)

https://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
https://components101.com/microcontrollers/arduino-nano

